↳ Prolog
↳ PrologToPiTRSProof
der_in_ga(d(e(t)), const(1)) → der_out_ga(d(e(t)), const(1))
der_in_ga(d(e(const(A))), const(0)) → der_out_ga(d(e(const(A))), const(0))
der_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, der_in_ga(d(e(X)), DX))
der_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, der_in_ga(d(e(X)), DX))
der_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, der_in_ga(d(X), DX))
U5_ga(X, DDX, der_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, der_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, der_out_ga(d(e(DX)), DDX)) → der_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, der_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, der_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, der_out_ga(d(e(Y)), DY)) → der_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, der_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, der_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, der_out_ga(d(e(Y)), DY)) → der_out_ga(d(e(+(X, Y))), +(DX, DY))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
der_in_ga(d(e(t)), const(1)) → der_out_ga(d(e(t)), const(1))
der_in_ga(d(e(const(A))), const(0)) → der_out_ga(d(e(const(A))), const(0))
der_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, der_in_ga(d(e(X)), DX))
der_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, der_in_ga(d(e(X)), DX))
der_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, der_in_ga(d(X), DX))
U5_ga(X, DDX, der_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, der_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, der_out_ga(d(e(DX)), DDX)) → der_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, der_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, der_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, der_out_ga(d(e(Y)), DY)) → der_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, der_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, der_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, der_out_ga(d(e(Y)), DY)) → der_out_ga(d(e(+(X, Y))), +(DX, DY))
DER_IN_GA(d(e(+(X, Y))), +(DX, DY)) → U1_GA(X, Y, DX, DY, der_in_ga(d(e(X)), DX))
DER_IN_GA(d(e(+(X, Y))), +(DX, DY)) → DER_IN_GA(d(e(X)), DX)
DER_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GA(X, Y, DY, DX, der_in_ga(d(e(X)), DX))
DER_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → DER_IN_GA(d(e(X)), DX)
DER_IN_GA(d(d(X)), DDX) → U5_GA(X, DDX, der_in_ga(d(X), DX))
DER_IN_GA(d(d(X)), DDX) → DER_IN_GA(d(X), DX)
U5_GA(X, DDX, der_out_ga(d(X), DX)) → U6_GA(X, DDX, DX, der_in_ga(d(e(DX)), DDX))
U5_GA(X, DDX, der_out_ga(d(X), DX)) → DER_IN_GA(d(e(DX)), DDX)
U3_GA(X, Y, DY, DX, der_out_ga(d(e(X)), DX)) → U4_GA(X, Y, DY, DX, der_in_ga(d(e(Y)), DY))
U3_GA(X, Y, DY, DX, der_out_ga(d(e(X)), DX)) → DER_IN_GA(d(e(Y)), DY)
U1_GA(X, Y, DX, DY, der_out_ga(d(e(X)), DX)) → U2_GA(X, Y, DX, DY, der_in_ga(d(e(Y)), DY))
U1_GA(X, Y, DX, DY, der_out_ga(d(e(X)), DX)) → DER_IN_GA(d(e(Y)), DY)
der_in_ga(d(e(t)), const(1)) → der_out_ga(d(e(t)), const(1))
der_in_ga(d(e(const(A))), const(0)) → der_out_ga(d(e(const(A))), const(0))
der_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, der_in_ga(d(e(X)), DX))
der_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, der_in_ga(d(e(X)), DX))
der_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, der_in_ga(d(X), DX))
U5_ga(X, DDX, der_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, der_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, der_out_ga(d(e(DX)), DDX)) → der_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, der_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, der_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, der_out_ga(d(e(Y)), DY)) → der_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, der_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, der_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, der_out_ga(d(e(Y)), DY)) → der_out_ga(d(e(+(X, Y))), +(DX, DY))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
DER_IN_GA(d(e(+(X, Y))), +(DX, DY)) → U1_GA(X, Y, DX, DY, der_in_ga(d(e(X)), DX))
DER_IN_GA(d(e(+(X, Y))), +(DX, DY)) → DER_IN_GA(d(e(X)), DX)
DER_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GA(X, Y, DY, DX, der_in_ga(d(e(X)), DX))
DER_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → DER_IN_GA(d(e(X)), DX)
DER_IN_GA(d(d(X)), DDX) → U5_GA(X, DDX, der_in_ga(d(X), DX))
DER_IN_GA(d(d(X)), DDX) → DER_IN_GA(d(X), DX)
U5_GA(X, DDX, der_out_ga(d(X), DX)) → U6_GA(X, DDX, DX, der_in_ga(d(e(DX)), DDX))
U5_GA(X, DDX, der_out_ga(d(X), DX)) → DER_IN_GA(d(e(DX)), DDX)
U3_GA(X, Y, DY, DX, der_out_ga(d(e(X)), DX)) → U4_GA(X, Y, DY, DX, der_in_ga(d(e(Y)), DY))
U3_GA(X, Y, DY, DX, der_out_ga(d(e(X)), DX)) → DER_IN_GA(d(e(Y)), DY)
U1_GA(X, Y, DX, DY, der_out_ga(d(e(X)), DX)) → U2_GA(X, Y, DX, DY, der_in_ga(d(e(Y)), DY))
U1_GA(X, Y, DX, DY, der_out_ga(d(e(X)), DX)) → DER_IN_GA(d(e(Y)), DY)
der_in_ga(d(e(t)), const(1)) → der_out_ga(d(e(t)), const(1))
der_in_ga(d(e(const(A))), const(0)) → der_out_ga(d(e(const(A))), const(0))
der_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, der_in_ga(d(e(X)), DX))
der_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, der_in_ga(d(e(X)), DX))
der_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, der_in_ga(d(X), DX))
U5_ga(X, DDX, der_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, der_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, der_out_ga(d(e(DX)), DDX)) → der_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, der_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, der_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, der_out_ga(d(e(Y)), DY)) → der_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, der_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, der_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, der_out_ga(d(e(Y)), DY)) → der_out_ga(d(e(+(X, Y))), +(DX, DY))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
DER_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → DER_IN_GA(d(e(X)), DX)
DER_IN_GA(d(e(+(X, Y))), +(DX, DY)) → DER_IN_GA(d(e(X)), DX)
U1_GA(X, Y, DX, DY, der_out_ga(d(e(X)), DX)) → DER_IN_GA(d(e(Y)), DY)
DER_IN_GA(d(e(+(X, Y))), +(DX, DY)) → U1_GA(X, Y, DX, DY, der_in_ga(d(e(X)), DX))
DER_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GA(X, Y, DY, DX, der_in_ga(d(e(X)), DX))
U3_GA(X, Y, DY, DX, der_out_ga(d(e(X)), DX)) → DER_IN_GA(d(e(Y)), DY)
der_in_ga(d(e(t)), const(1)) → der_out_ga(d(e(t)), const(1))
der_in_ga(d(e(const(A))), const(0)) → der_out_ga(d(e(const(A))), const(0))
der_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, der_in_ga(d(e(X)), DX))
der_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, der_in_ga(d(e(X)), DX))
der_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, der_in_ga(d(X), DX))
U5_ga(X, DDX, der_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, der_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, der_out_ga(d(e(DX)), DDX)) → der_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, der_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, der_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, der_out_ga(d(e(Y)), DY)) → der_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, der_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, der_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, der_out_ga(d(e(Y)), DY)) → der_out_ga(d(e(+(X, Y))), +(DX, DY))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
DER_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → DER_IN_GA(d(e(X)), DX)
DER_IN_GA(d(e(+(X, Y))), +(DX, DY)) → DER_IN_GA(d(e(X)), DX)
U1_GA(X, Y, DX, DY, der_out_ga(d(e(X)), DX)) → DER_IN_GA(d(e(Y)), DY)
DER_IN_GA(d(e(+(X, Y))), +(DX, DY)) → U1_GA(X, Y, DX, DY, der_in_ga(d(e(X)), DX))
DER_IN_GA(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_GA(X, Y, DY, DX, der_in_ga(d(e(X)), DX))
U3_GA(X, Y, DY, DX, der_out_ga(d(e(X)), DX)) → DER_IN_GA(d(e(Y)), DY)
der_in_ga(d(e(t)), const(1)) → der_out_ga(d(e(t)), const(1))
der_in_ga(d(e(const(A))), const(0)) → der_out_ga(d(e(const(A))), const(0))
der_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, der_in_ga(d(e(X)), DX))
der_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, der_in_ga(d(e(X)), DX))
U1_ga(X, Y, DX, DY, der_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, der_in_ga(d(e(Y)), DY))
U3_ga(X, Y, DY, DX, der_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, der_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, der_out_ga(d(e(Y)), DY)) → der_out_ga(d(e(+(X, Y))), +(DX, DY))
U4_ga(X, Y, DY, DX, der_out_ga(d(e(Y)), DY)) → der_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ PiDP
DER_IN_GA(d(e(+(X, Y)))) → DER_IN_GA(d(e(X)))
DER_IN_GA(d(e(*(X, Y)))) → U3_GA(X, Y, der_in_ga(d(e(X))))
DER_IN_GA(d(e(*(X, Y)))) → DER_IN_GA(d(e(X)))
U1_GA(Y, der_out_ga(DX)) → DER_IN_GA(d(e(Y)))
DER_IN_GA(d(e(+(X, Y)))) → U1_GA(Y, der_in_ga(d(e(X))))
U3_GA(X, Y, der_out_ga(DX)) → DER_IN_GA(d(e(Y)))
der_in_ga(d(e(t))) → der_out_ga(const(1))
der_in_ga(d(e(const(A)))) → der_out_ga(const(0))
der_in_ga(d(e(+(X, Y)))) → U1_ga(Y, der_in_ga(d(e(X))))
der_in_ga(d(e(*(X, Y)))) → U3_ga(X, Y, der_in_ga(d(e(X))))
U1_ga(Y, der_out_ga(DX)) → U2_ga(DX, der_in_ga(d(e(Y))))
U3_ga(X, Y, der_out_ga(DX)) → U4_ga(X, Y, DX, der_in_ga(d(e(Y))))
U2_ga(DX, der_out_ga(DY)) → der_out_ga(+(DX, DY))
U4_ga(X, Y, DX, der_out_ga(DY)) → der_out_ga(+(*(X, DY), *(Y, DX)))
der_in_ga(x0)
U1_ga(x0, x1)
U3_ga(x0, x1, x2)
U2_ga(x0, x1)
U4_ga(x0, x1, x2, x3)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DER_IN_GA(d(e(*(X, Y)))) → DER_IN_GA(d(e(X)))
U3_GA(X, Y, der_out_ga(DX)) → DER_IN_GA(d(e(Y)))
Used ordering: Polynomial interpretation [25]:
DER_IN_GA(d(e(+(X, Y)))) → DER_IN_GA(d(e(X)))
DER_IN_GA(d(e(*(X, Y)))) → U3_GA(X, Y, der_in_ga(d(e(X))))
U1_GA(Y, der_out_ga(DX)) → DER_IN_GA(d(e(Y)))
DER_IN_GA(d(e(+(X, Y)))) → U1_GA(Y, der_in_ga(d(e(X))))
POL(*(x1, x2)) = 1 + x1 + x2
POL(+(x1, x2)) = x1 + x2
POL(0) = 0
POL(1) = 0
POL(DER_IN_GA(x1)) = x1
POL(U1_GA(x1, x2)) = x1
POL(U1_ga(x1, x2)) = 0
POL(U2_ga(x1, x2)) = 0
POL(U3_GA(x1, x2, x3)) = 1 + x2
POL(U3_ga(x1, x2, x3)) = 0
POL(U4_ga(x1, x2, x3, x4)) = 0
POL(const(x1)) = 0
POL(d(x1)) = x1
POL(der_in_ga(x1)) = 0
POL(der_out_ga(x1)) = 0
POL(e(x1)) = x1
POL(t) = 0
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ PiDP
DER_IN_GA(d(e(+(X, Y)))) → DER_IN_GA(d(e(X)))
DER_IN_GA(d(e(*(X, Y)))) → U3_GA(X, Y, der_in_ga(d(e(X))))
U1_GA(Y, der_out_ga(DX)) → DER_IN_GA(d(e(Y)))
DER_IN_GA(d(e(+(X, Y)))) → U1_GA(Y, der_in_ga(d(e(X))))
der_in_ga(d(e(t))) → der_out_ga(const(1))
der_in_ga(d(e(const(A)))) → der_out_ga(const(0))
der_in_ga(d(e(+(X, Y)))) → U1_ga(Y, der_in_ga(d(e(X))))
der_in_ga(d(e(*(X, Y)))) → U3_ga(X, Y, der_in_ga(d(e(X))))
U1_ga(Y, der_out_ga(DX)) → U2_ga(DX, der_in_ga(d(e(Y))))
U3_ga(X, Y, der_out_ga(DX)) → U4_ga(X, Y, DX, der_in_ga(d(e(Y))))
U2_ga(DX, der_out_ga(DY)) → der_out_ga(+(DX, DY))
U4_ga(X, Y, DX, der_out_ga(DY)) → der_out_ga(+(*(X, DY), *(Y, DX)))
der_in_ga(x0)
U1_ga(x0, x1)
U3_ga(x0, x1, x2)
U2_ga(x0, x1)
U4_ga(x0, x1, x2, x3)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ PiDP
DER_IN_GA(d(e(+(X, Y)))) → DER_IN_GA(d(e(X)))
U1_GA(Y, der_out_ga(DX)) → DER_IN_GA(d(e(Y)))
DER_IN_GA(d(e(+(X, Y)))) → U1_GA(Y, der_in_ga(d(e(X))))
der_in_ga(d(e(t))) → der_out_ga(const(1))
der_in_ga(d(e(const(A)))) → der_out_ga(const(0))
der_in_ga(d(e(+(X, Y)))) → U1_ga(Y, der_in_ga(d(e(X))))
der_in_ga(d(e(*(X, Y)))) → U3_ga(X, Y, der_in_ga(d(e(X))))
U1_ga(Y, der_out_ga(DX)) → U2_ga(DX, der_in_ga(d(e(Y))))
U3_ga(X, Y, der_out_ga(DX)) → U4_ga(X, Y, DX, der_in_ga(d(e(Y))))
U2_ga(DX, der_out_ga(DY)) → der_out_ga(+(DX, DY))
U4_ga(X, Y, DX, der_out_ga(DY)) → der_out_ga(+(*(X, DY), *(Y, DX)))
der_in_ga(x0)
U1_ga(x0, x1)
U3_ga(x0, x1, x2)
U2_ga(x0, x1)
U4_ga(x0, x1, x2, x3)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DER_IN_GA(d(e(+(X, Y)))) → DER_IN_GA(d(e(X)))
DER_IN_GA(d(e(+(X, Y)))) → U1_GA(Y, der_in_ga(d(e(X))))
Used ordering: Polynomial interpretation [25]:
U1_GA(Y, der_out_ga(DX)) → DER_IN_GA(d(e(Y)))
POL(*(x1, x2)) = 0
POL(+(x1, x2)) = 1 + x1 + x2
POL(0) = 0
POL(1) = 0
POL(DER_IN_GA(x1)) = x1
POL(U1_GA(x1, x2)) = x1
POL(U1_ga(x1, x2)) = 0
POL(U2_ga(x1, x2)) = 0
POL(U3_ga(x1, x2, x3)) = 0
POL(U4_ga(x1, x2, x3, x4)) = 0
POL(const(x1)) = 0
POL(d(x1)) = x1
POL(der_in_ga(x1)) = 0
POL(der_out_ga(x1)) = 0
POL(e(x1)) = x1
POL(t) = 0
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ PiDP
U1_GA(Y, der_out_ga(DX)) → DER_IN_GA(d(e(Y)))
der_in_ga(d(e(t))) → der_out_ga(const(1))
der_in_ga(d(e(const(A)))) → der_out_ga(const(0))
der_in_ga(d(e(+(X, Y)))) → U1_ga(Y, der_in_ga(d(e(X))))
der_in_ga(d(e(*(X, Y)))) → U3_ga(X, Y, der_in_ga(d(e(X))))
U1_ga(Y, der_out_ga(DX)) → U2_ga(DX, der_in_ga(d(e(Y))))
U3_ga(X, Y, der_out_ga(DX)) → U4_ga(X, Y, DX, der_in_ga(d(e(Y))))
U2_ga(DX, der_out_ga(DY)) → der_out_ga(+(DX, DY))
U4_ga(X, Y, DX, der_out_ga(DY)) → der_out_ga(+(*(X, DY), *(Y, DX)))
der_in_ga(x0)
U1_ga(x0, x1)
U3_ga(x0, x1, x2)
U2_ga(x0, x1)
U4_ga(x0, x1, x2, x3)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
DER_IN_GA(d(d(X)), DDX) → DER_IN_GA(d(X), DX)
der_in_ga(d(e(t)), const(1)) → der_out_ga(d(e(t)), const(1))
der_in_ga(d(e(const(A))), const(0)) → der_out_ga(d(e(const(A))), const(0))
der_in_ga(d(e(+(X, Y))), +(DX, DY)) → U1_ga(X, Y, DX, DY, der_in_ga(d(e(X)), DX))
der_in_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX))) → U3_ga(X, Y, DY, DX, der_in_ga(d(e(X)), DX))
der_in_ga(d(d(X)), DDX) → U5_ga(X, DDX, der_in_ga(d(X), DX))
U5_ga(X, DDX, der_out_ga(d(X), DX)) → U6_ga(X, DDX, DX, der_in_ga(d(e(DX)), DDX))
U6_ga(X, DDX, DX, der_out_ga(d(e(DX)), DDX)) → der_out_ga(d(d(X)), DDX)
U3_ga(X, Y, DY, DX, der_out_ga(d(e(X)), DX)) → U4_ga(X, Y, DY, DX, der_in_ga(d(e(Y)), DY))
U4_ga(X, Y, DY, DX, der_out_ga(d(e(Y)), DY)) → der_out_ga(d(e(*(X, Y))), +(*(X, DY), *(Y, DX)))
U1_ga(X, Y, DX, DY, der_out_ga(d(e(X)), DX)) → U2_ga(X, Y, DX, DY, der_in_ga(d(e(Y)), DY))
U2_ga(X, Y, DX, DY, der_out_ga(d(e(Y)), DY)) → der_out_ga(d(e(+(X, Y))), +(DX, DY))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
DER_IN_GA(d(d(X)), DDX) → DER_IN_GA(d(X), DX)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
DER_IN_GA(d(d(X))) → DER_IN_GA(d(X))
From the DPs we obtained the following set of size-change graphs: